辰乐游戏:为玩家推荐真正好玩的手机游戏!

辰乐游戏 > 游戏攻略 > 阿里RocketMQ消息队列原理&最佳实践

阿里RocketMQ消息队列原理&最佳实践

作者:佚名 来源:辰乐游戏 时间:2020-06-15 00:00:00

阿里RocketMQ消息队列原理&最佳实践

前言:

晓杰最近在面试JAVA,这个是面试官问到的问题!希望大家也学习下!共同进步!


一、 MQ背景&选型

消息队列作为高并发系统的核心组件之一,能够帮助业务系统解构提升开发效率和系统稳定性。主要具有以下优势:

  • 削峰填谷(主要解决瞬时写压力大于应用服务能力导致消息丢失、系统奔溃等问题)
  • 系统解耦(解决不同重要程度、不同能力级别系统之间依赖导致一死全死)
  • 提升性能(当存在一对多调用时,可以发一条消息给消息系统,让消息系统通知相关系统)
  • 蓄流压测(线上有些链路不好压测,可以通过堆积一定量消息再放开来压测)

目前主流的MQ主要是Rocketmq、kafka、Rabbitmq,Rocketmq相比于Rabbitmq、kafka具有主要优势特性有:
• 支持事务型消息(消息发送和DB操作保持两方的最终一致性,rabbitmq和kafka不支持)
• 支持结合rocketmq的多个系统之间数据最终一致性(多方事务,二方事务是前提)
• 支持18个级别的延迟消息(rabbitmq和kafka不支持)
• 支持指定次数和时间间隔的失败消息重发(kafka不支持,rabbitmq需要手动确认)
• 支持consumer端tag过滤,减少不必要的网络传输(rabbitmq和kafka不支持)
• 支持重复消费(rabbitmq不支持,kafka支持)

Rocketmq、kafka、Rabbitmq的详细对比,请参照下表格:

二、RocketMQ集群概述

1. RocketMQ集群部署结构


1) Name Server

Name Server是一个几乎无状态节点,可集群部署,节点之间无任何信息同步。

2) Broker

Broker部署相对复杂,Broker分为Master与Slave,一个Master可以对应多个Slave,但是一个Slave只能对应一个Master,Master与Slave的对应关系通过指定相同的Broker Name,不同的Broker Id来定义,BrokerId为0表示Master,非0表示Slave。Master也可以部署多个。

每个Broker与Name Server集群中的所有节点建立长连接,定时(每隔30s)注册Topic信息到所有Name Server。Name Server定时(每隔10s)扫描所有存活broker的连接,如果Name Server超过2分钟没有收到心跳,则Name Server断开与Broker的连接。

3) Producer

Producer与Name Server集群中的其中一个节点(随机选择)建立长连接,定期从Name Server取Topic路由信息,并向提供Topic服务的Master建立长连接,且定时向Master发送心跳。Producer完全无状态,可集群部署。

Producer每隔30s(由ClientConfig的pollNameServerInterval)从Name server获取所有topic队列的最新情况,这意味着如果Broker不可用,Producer最多30s能够感知,在此期间内发往Broker的所有消息都会失败。

Producer每隔30s(由ClientConfig中heartbeatBrokerInterval决定)向所有关联的broker发送心跳,Broker每隔10s中扫描所有存活的连接,如果Broker在2分钟内没有收到心跳数据,则关闭与Producer的连接。

4) Consumer

Consumer与Name Server集群中的其中一个节点(随机选择)建立长连接,定期从Name Server取Topic路由信息,并向提供Topic服务的Master、Slave建立长连接,且定时向Master、Slave发送心跳。Consumer既可以从Master订阅消息,也可以从Slave订阅消息,订阅规则由Broker配置决定。

Consumer每隔30s从Name server获取topic的最新队列情况,这意味着Broker不可用时,Consumer最多最需要30s才能感知。

Consumer每隔30s(由ClientConfig中heartbeatBrokerInterval决定)向所有关联的broker发送心跳,Broker每隔10s扫描所有存活的连接,若某个连接2分钟内没有发送心跳数据,则关闭连接;并向该Consumer Group的所有Consumer发出通知,Group内的Consumer重新分配队列,然后继续消费。

当Consumer得到master宕机通知后,转向slave消费,slave不能保证master的消息100%都同步过来了,因此会有少量的消息丢失。但是一旦master恢复,未同步过去的消息会被最终消费掉。

消费者对列是消费者连接之后(或者之前有连接过)才创建的。我们将原生的消费者标识由 {IP}@{消费者group}扩展为 {IP}@{消费者group}{topic}{tag},(例如xxx.xxx.xxx.xxx@mqtest_producer-group_2m2sTest_tag-zyk)。任何一个元素不同,都认为是不同的消费端,每个消费端会拥有一份自己消费对列(默认是broker对列数量*broker数量)。新挂载的消费者对列中拥有commitlog中的所有数据。

如果有需要,可以查看Rocketmq更多源码解析

三、 Rocketmq如何支持分布式事务消息

场景

A(存在DB操作)、B(存在DB操作)两方需要保证分布式事务一致性,通过引入中间层MQ,A和MQ保持事务一致性(异常情况下通过MQ反查A接口实现check),B和MQ保证事务一致(通过重试),从而达到最终事务一致性。

原理:大事务 = 小事务 + 异步

1. MQ与DB一致性原理(两方事务)

流程图


上图是RocketMQ提供的保证MQ消息、DB事务一致性的方案。

MQ消息、DB操作一致性方案:

1)发送消息到MQ服务器,此时消息状态为SEND_OK。此消息为consumer不可见。

2)执行DB操作;DB执行成功Commit DB操作,DB执行失败Rollback DB操作。

3)如果DB执行成功,回复MQ服务器,将状态为COMMIT_MESSAGE;如果DB执行失败,回复MQ服务器,将状态改为ROLLBACK_MESSAGE。注意此过程有可能失败。

4)MQ内部提供一个名为“事务状态服务”的服务,此服务会检查事务消息的状态,如果发现消息未COMMIT,则通过Producer启动时注册的TransactionCheckListener来回调业务系统,业务系统在checkLocalTransactionState方法中检查DB事务状态,如果成功,则回复COMMIT_MESSAGE,否则回复ROLLBACK_MESSAGE。

说明:

上面以DB为例,其实此处可以是任何业务或者数据源。

以上SEND_OK、COMMIT_MESSAGE、ROLLBACK_MESSAGE均是client jar提供的状态,在MQ服务器内部是一个数字。

TransactionCheckListener 是在消息的commit或者rollback消息丢失的情况下才会回调(上图中灰色部分)。这种消息丢失只存在于断网或者rocketmq集群挂了的情况下。当rocketmq集群挂了,如果采用异步刷盘,存在1s内数据丢失风险,异步刷盘场景下保障事务没有意义。所以如果要核心业务用Rocketmq解决分布式事务问题,建议选择同步刷盘模式。

2. 多系统之间数据一致性(多方事务)



当需要保证多方(超过2方)的分布式一致性,上面的两方事务一致性(通过Rocketmq的事务性消息解决)已经无法支持。这个时候需要引入TCC模式思想(Try-Confirm-Cancel,不清楚的自行百度)。

以上图交易系统为例:

1)交易系统创建订单(往DB插入一条记录),同时发送订单创建消息。通过RocketMq事务性消息保证一致性

2)接着执行完成订单所需的同步核心RPC服务(非核心的系统通过监听MQ消息自行处理,处理结果不会影响交易状态)。执行成功更改订单状态,同时发送MQ消息。

3)交易系统接受自己发送的订单创建消息,通过定时调度系统创建延时回滚任务(或者使用RocketMq的重试功能,设置第二次发送时间为定时任务的延迟创建时间。在非消息堵塞的情况下,消息第一次到达延迟为1ms左右,这时可能RPC还未执行完,订单状态还未设置为完成,第二次消费时间可以指定)。延迟任务先通过查询订单状态判断订单是否完成,完成则不创建回滚任务,否则创建。 PS:多个RPC可以创建一个回滚任务,通过一个消费组接受一次消息就可以;也可以通过创建多个消费组,一个消息消费多次,每次消费创建一个RPC的回滚任务。 回滚任务失败,通过MQ的重发来重试。

以上是交易系统和其他系统之间保持最终一致性的解决方案。

3.案例分析

1) 单机环境下的事务示意图

如下为A给B转账的例子。

步骤 动作 1 锁定A的账户 2 锁定B的账户 3 检查A账户是否有1元 4 A的账户扣减1元 5 给B的账户加1元 6 解锁B的账户 7 解锁A的账户
  • 精品游戏
  • 最热榜单